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Abstract— Adaptive video streaming has become prominent 

due to the rising diversity of Web-enabled personal devices. 

Common limitations in bandwidth and decoding power challenge 

the efficiency of content encoders to preserve visual quality at 

reduced data rates over a wide range of display resolutions. 

Objective assessment of perceptual video quality has greatly 

improved in the past decade but remains an open problem. Among 

the most relevant metrics are the many variations of the 

Structural Similarity (SSIM) index. In this work, several SSIM-

based metrics are compared, optimized and improved towards 

better correlation with human perception by testing the HD 

content of the LIVE Mobile Video Quality Database. A shifted 

gradient is proposed to preserve more image feature information 

for similarity comparison, thus increasing accuracy, along with a 

down-sampling box pooling filter that coherently emulates 

Gaussian pooling while reducing computation complexity by a 

factor of four and providing broader scalability. 

 

Index Terms— image quality, rate-distortion optimization, 

video perceptual fidelity, adaptive video streaming, structural 

similarity 

I. INTRODUCTION 

The increasing diversity of personal devices with varying 

bandwidth and video decoding capabilities, along with the 

billionaire entertainment industry and the recent cloud services 

paradigm, have led to a prevalence of adaptive video streaming 

services in the Internet. In such systems, several low-data-rate 

versions of each video content are produced according to 

targeted devices and bandwidth, while attempting to maintain a 

threshold of visual quality against human perception [1]. 

However, accurately modelling the human perception of image 

quality remains an open research problem [2]. 

The Structural Similarity (SSIM) index for image quality 

assessment (IQA) has gained wide adoption and has been 

improved by various techniques [2]-[12]. However, such 

metrics are often developed for general-purpose IQA, whereas 

video versioning for adaptive streaming poses a specific, 

reduced set of problems for which the effectiveness of general-

purpose metrics may substantially differ. Typical problems are 

loss of visual information by blurring, and addition of artifacts, 

such as banding, blocking and ringing. An effective encoding 

implementation minimizes blur and artifacts by means of rate-

distortion optimization (RDO) and adaptive quantization (AQ) 

methods [13], [14]. Also, encoding and streaming require low 

latency, so restricting computational complexity for higher 

encoding performance is a primary concern as well. 

Particularly effective implementations of RDO and AQ are 

found in the X264 encoder for H.264 video, one of the most 

efficient publicly available video encoders [15]-[17]. Dubbed 

psychovisual RDO or Psy-RDO, they have been calibrated to 

subjective quality by prioritizing visual detail retention over 

traditional metrics that favor blurring such as mean squared 

error (MSE) and even the original SSIM. These features, 

coupled with the fact that H.264 is the most ubiquitous video 

format in connected devices, make X264 encoding a relevant 

case study. 

Most modern video encoders employ basic forms of the 

original SSIM for RDO, but Psy-RDO has been shown to give 

better subjective quality [18]. By studying optimization 

decisions in X264 which improve upon simple SSIM-based 

decisions, we propose a new SSIM-based index that better 

correlates with subjective video quality assessment and that is 

more computationally efficient. 

The rest of the work is organized as follows. Section II 

discusses the psychovisual RDO that motivates the Shifted 

Gradient Similarity (SG-Sim) proposal. Section III reviews the 

SSIM metric and many of its derivations. Section IV explains 

and defines SG-Sim. Section V presents pooling filter 

optimizations. Section VI provides the experimental results. 

Finally, Section VII gives conclusions and proposes further 

investigation. 

II. PSYCHOVISUAL RATE-DISTORTION OPTIMIZATION 

Every lossy video encoder faces a critical decision: which 

information to discard with the least impact on visual quality. 

Mean squared error (MSE) is the most widely and longest 

adopted metric for quantization decisions during encoding, as 

well as for video quality assessment (VQA), such as in the form 

of peak signal-to-noise ratio (PSNR). However, it is long 

proven a poor perceptual metric, favoring blur over fine detail 

and completely disregarding image structure and spatial 

coherence [19], a deficiency upon which SSIM-based metrics 

improve. In general, poor encoder implementations maximize 

PSNR whereas good implementations maximize SSIM. 

Psy-RDO is an encoding mode of X264 which employs fine-

tuned techniques such as adaptive quantization, visual energy 

retention, Trellis quantization and in-loop de-blocking filter [18] 

to achieve better subjective image quality than RDO by SSIM. 

Particularly, Psy-RDO produces less blur than SSIM, which the 

developers argue improves subjective assessment due to 

preservation of complexity. Further, AQ defines regions of 

homogeneous complexities within the spatial transform blocks 



and pays particular attention to smooth gradients, such as the 

sky, which may easily suffer blocking and degrade subjective 

quality disproportionally to actual information loss. 

Psy-RDO is a coding implementation, not actually a VQA 

metric such as SSIM. A metric that is analogous with the 

contributions of Psy-RDO would be useful to improve RDO 

implementations as well as VQA in general. SSIM has been 

modified towards a wide range of applications, and can also be 

modified to this task. Such application is represented in Fig. 1.   

III. SSIM AND RELATED METRICS 

Wang and Bovik’s original universal image quality index 

[20] analyses the luminance channels of two images x and y in 

terms of contrast (variance of intensities, actually the standard 

deviation σx), structure (correlation of variances, σxy) and 

luminance (mean intensities, μx). Pixel results are spatially 

pooled by an 8x8 box filter, which promotes index coherence 

and stabilization, consistently with the human visual system 

(HVS). Later improvement of this metric by Wang et al. [3] 

resulted in the SSIM index, defined in (1), with division 

stabilization through addition of constants proportional to the 

image’s dynamic range, and the contrast and structure terms 

combined and simplified into a single structure term that 

defines the index. Further, the box filter is replaced by an 11x11 

Gaussian filter with σ = 1.5. Thus, SSIM may be understood as 

a combination of a structure statistic, a division stabilization 

strategy and a pooling filter. In video, the overall SSIM result 

is usually the simple mean of the indexes for all individual 

frames in the stream. 
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Rouse and Hemami [4] argue, however, that the luminance 

term offers insignificant contribution; this is corroborated by 

the Multi-scaled SSIM (MS-SSIM) [5] and Gradient 

Magnitude Similarity Deviation (GMSD) [2] indexes. 

MS-SSIM achieves better subjective correlation because 

HVS itself is multi-scalar. This index pools the responses of 

five scales of the image structure, through dyadic down-

sampling, and computes luminance only for the smallest scale. 

Chen, Yang and Xie [6] applied SSIM to the gradients of the 

evaluated images, and this was found more effective. Inversely, 

3-SSIM [7] and 4-SSIM [8] propose to segment and weight 

SSIM by the gradients. Chen and Bovik [9], however, discard 

variance altogether in their optimized Fast SSIM, comparing 

only the gradients, also optimizing computation speed by an 

integer approximation of the quadratic magnitude. Gradients 

are particularly effective in encoding VQA because they are 

sensitive to both blurring and compression artifacts. Fast SSIM 

also proposes to perform multi-scaling with only the four 

reduced scales, ignoring the original, which contributes the 

least to the final index. 

GMSD [2] is another metric that substitutes variance by 

gradient, and also discards the luminance and structure terms, 

comparing only the simple contrasts (gradients). Spatial 

pooling in GMSD is global instead of local, and by standard 

deviation instead of mean. It is one of the fastest SSIM-based 

metrics and achieves generally higher correlation with 

subjective scores for visual quality than MS-SSIM. 

Temporal-based SSIM variations such as Motion-based 

Video Integrity Evaluation (MOVIE) [10] and Spatio-

Temporal Video SSIM [11] were not tested in this work due to 

their higher complexity which is detrimental to performance in 

both RDO and live streaming. 

IV. THE SHIFTED GRADIENT SIMILARITY 

Preliminary experiments showed that comparisons between 

only the gradients produce more zero dividends in the SSIM 

equation than variance does, which results in loss of useful 

information and an overall decrease in the index and its 

effectiveness. We propose to mitigate this pitfall by shifting the 

gradient's magnitudes by +1. We find this improves the index’s 

responses compared to stabilizing with a distorting constant, 

because numeric proportions between the compared pixel 

intensities are preserved. Also, amplitudes between similar 

indexes are generally widened, facilitating comparison. This 

corroborates with criticism by Rouse and Hemami [12] to the 

distortions arising from stabilization by constants and also 

improves adherence to Weber’s law of light adaptation [3]. 

Indeed, Wang et al [3] admit the constant stabilizer’s value to 

be “somewhat arbitrary”. 

To illustrate SSIM behavior, suppose an original gradient of 

1 that is distorted to 2: without stabilization, (1) produces an 

index of 0.8; whereas the usual stabilization constant of 58.5 

produces an index of 0.9843. When 1 is distorted to 8, the index 

is 0.6032 with constants and 0.2462 without. At higher 

intensities, any distortion affects less the index: 200 distorted 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑋𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 +  𝐶2)

(𝜇𝑥
2  + 𝜇𝑦
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Fig. 1. The low-data-rate streaming versions of different RDO modes may be compared to the source by VQA metrics in order to identify correlations between 

RDO modes and VQA metrics. Results allow improvements to both RDO implementations and VQA metrics. 



to 230 produces 0.9903, both with and without a stabilizer 

constant. As the gradient may be considered analogous to 

contrast for MPEG-based VQA purposes, increasing the 

response to differences in lower magnitudes better correlates to 

light adaptation and may improve the index’s effectiveness. 
The approximation of the shifted gradient of the source video, 

∇S, is defined below in (2), where ∇x and ∇y are the vertical 
and horizontal responses to the Roberts cross operators [9]. 
∇V is its counterpart for the low-data-rate version. Spatial 
pooling, represented by μ for N pixels, is defined below in 
(3) and (4), and may represent the simple mean of a Box 
filter, the normal distribution of a Gaussian filter, or the 
entire frame, unfiltered. The Shifted Gradient Similarity 
index (SG-Sim) is defined below in (5). 
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V. OPTIMIZING THE POOLING FILTER 

Fast SSIM identifies the greatest computational cost in 

SSIM-based indexes as the spatial convolutions used for 

pooling local intensities [9]. Digital video typically streams at 

least 24 frames per second, so efficiency in computations is a 

primary concern. To minimize the impact of convolutions, that 

metric avoids all floating point operations, typical of image 

filtering, by employing a rough integer approximation of the 

Gaussian filter and normalizing the response by dividing by the 

sum of the coefficients for weights. Further, the window size is 

reduced from 11x11 to 8x8, for 48% less operations. 

The coefficients chosen for Fast SSIM, however, are 

significantly imprecise and 37.5% null. We propose, instead, to 

trim the 11x11 Gaussian filter to its core 7x7 coefficients, 

normalized so that the first equals 1. With σ =1.5, an 11x11 

filter includes 3.3 standard deviations of the normal distribution 

at the horizontal and vertical rows, whereas a 7x7 filter covers 

exactly 2 deviations, which give 96.6% of the weights of the 

former using merely 40.5% of the coefficients. Further, a 5x5 

filter would cover 1.3 deviations and 86% of the weights using 

merely 20.7% of the coefficients. Our experiments show that, 

due to spatial coherency of natural images, the index responses 

to those approximations are over 99% similar to the response 

from the full 11x11 filter, while computing respectively 23% 

and 30% faster in an well-known optimized implementation by 

two perpendicular separated 1-dimensional filters instead of the 

single 2-dimensional filter. 

Spatial coherency also allows replacing the 5x5 Gaussian 

filter by a 5x5 box filter, then down-sampling by such filter 

instead of sliding the window, while retaining 98% similarity 

and computing 250% faster than the 11x11 Gaussian filter. The 

down-sampling box window strategy also enables scalability: 

for an arbitrarily larger video frame, a proportionally larger 

window down-samples to the same size for assessment so that 

the only increases in computation cost are during the gradient 

filtering and box down-sampling. This strategy may be 

particularly effective for Full HD and Ultra HD content. 

VI. PERCEPTUAL CORRELATION AND COMPLEXITY TESTS 

The video samples of compression distortion in the LIVE 

Mobile Video Quality Database [21], [22] were used for 

evaluating the perceptual performances of the reference and 

proposed metrics. These consist of four versions of increasing 

distortion for each of ten 15-second HD video sequences. 

Degradation mean opinion scores (DMOS) are given for each 

of the forty distorted versions in order to test metric correlation. 

The methodology of the ITU-T Video Quality Experts Group 

[22] was applied, which consists of evaluations of accuracy, 

monotonicity and consistency of the metrics predictions of 

DMOS by respectively the Pearson linear correlation 

coefficient (LCC), the Spearman rank order correlation 

coefficient (ROCC) and the root mean squared error (RMSE), 

all over the non-linear regression of the data by a logistic fitting 

function. Finally, the metrics’ computation time in seconds was 

also measured for relative performance comparison. 

The experiments were implemented as an extensible 

framework of numerous SSIM-based tools designed for VQA 

experimentation with 1080p support called Video Quality 

Assessment in Java – JVQA, available online at 

http://sourceforge.net/p/jvqa. All tests were conducted in a 

single processing thread on a 64-bit Windows 7 system on an 

Intel Core i5-4690 CPU.  

Table 1 presents the most representative results. The shifted 

gradient metrics are always without stabilizing constants, 

whereas all others always use the constants, except where 

conditional is specified. The best three results for each column 

are shown in bold; our propositions are in italic. Fig. 2 gives the 

scatter plots for the logistic-fitted regression data for SG-Sim.  

Table 1. Performance comparison of VQA metrics over the LIVE database. 

Metric LCC ROCC RMSE Time 

Four-scaled SG-Sim, Gauss 0.907 0.917 0.48 0.37 

Five-scaled SG-Sim, Gauss 0.904 0.913 0.49 0.99 

Four-scaled SG-Sim, Down-

sampling Box 
0.901 0.908 0.49 0.19 

Five-scaled SSIM, Gauss [5] 0.839 0.840 0.62 1.40 

SG-Sim, Gauss 0.812 0.823 0.67 0.69 

Fast SSIM, Gauss [9] 0.803 0.807 0.68 0.68 

GMSD [2] 0.804 0.782 0.68 0.37 

SG-Sim, Box 0.797 0.781 0.69 0.43 

SG-Sim, Down-sampling Box 0.797 0.781 0.69 0.24 

Fast SSIM, conditional [9], [12] 0.773 0.747 0.72 0.68 

3-SSIM, Gauss [7] 0.761 0.731 0.74 1.48 

SSIM, Gauss [3] 0.743 0.708 0.76 1.00 

SG-Sim, unfiltered 0.690 0.675 0.83 0.14 

 

Our proposed shifted gradient image enhancement statistic 

stands out as a perceptual improvement over the SSIM index as 

well as the recent GMSD, while 45% faster than the first and 

86% slower than the latter. Although GMSD retains a 

𝛻𝑆𝑖 = max(|𝛻𝑥𝑖|, |𝛻𝑦𝑖|) +  1
4⁄ min(|𝛻𝑥𝑖|, |𝛻𝑦𝑖|) +  1 
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significant balance of perceptual correlation and complexity, 

the shifted gradient pooled by our second proposal, the down-

sampling box filter, is 54% faster and statistically equivalent in 

perceptual correlation to GMSD, while also four times faster 

than variance with Gaussian. 

Multi-scaling was found to improve the shifted gradient 

statistic as well as its established improvement to variance, and 

four scales achieves the best quality and some of the best 

computing times. In fact, four-scaled SG-Sim pooled by down-

sampling is only matched in speed by the unfiltered metric, 

which has poor quality, and produces significantly higher 

quality than MS-SSIM. 

Substitution of constants in division stabilization by logical 

treatment, however, was found to improve neither computa-

tional complexity nor perceptual correlation. Also, the poor 

results for unfiltered shifted gradient in all criteria highlight the 

importance of spatial pooling in the index.  

VII. CONCLUSIONS 

This paper proposes the Shifted Gradient Similarity VQA 

metric, along with the optimized down-sampling box pooling 

filter, as a significant improvement over established SSIM 

variations in correlation to subjective opinion scores as well as 

in computational complexity, both of which are critical 

concerns for quality of service in Web streaming. We 

demonstrate that studying the behavior of the responses of 

VQA metrics yields mathematical improvements which, 

however simple in nature, significantly improve performance 

both in quality assessment and in computational complexity. 

This work has also produced a flexible, light-weight and open-

sourced VQA framework to facilitate experimentation. 

The down-sampling box pooling filter is expected to allow 

scalability over a broad range of resolutions and data rates, 

though this remains to be verified. Future work may also 

investigate how SG-SIM compares to different, also effective 

metrics such as VQM [23] and FSIM [24]. 
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Fig. 2. Scatter plots of quality scores predicted by three SG-Sim variations versus the actual subjective scores (DMOS). (a) SG-Sim with 7x7 Gaussian 
pooling. (b) SG-Sim with 5x5 Down-sampled Box pooling. (c) Five-scaled SG-Sim with 7x7 Gaussian pooling. 

 

 
 


