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 

Abstract—In a world of diverse connected devices, with vary-

ing bandwidth and video decoding capabilities, along with a 

billionaire entertainment industry, adaptive video streaming 

services have become prevalent in the Internet. In such systems, 

several versions of same content are produced according to tar-

geted devices and bandwidth, while attempting to maintain a 

threshold of quality against human perception. Modeling human 

perception of images has been a prolific research field for years, 

and the SSIM index has gained wide adoption and has been 

tuned and extended with varying techniques. As well, the x264 

encoder for H.264 video has been established as the most efficient 

publicly available video encoder, notorious for its psychovisual 

tunings. This paper presents an extensible, open-source frame-

work for numerous SSIM-based tools designed for high perfor-

mance and Full HD support, called jVQA. Upon this framework, 

the performances of 32 combinations of 10 SSIM techniques are 

compared and it is found that gradient correlation greatly out-

performs variance correlation in measuring x264’s psychovisual 

improvements, while computing faster, among many more specif-

ic findings, including original improvements proposed in this 

paper. 

 
Index Terms—Avisynth, error analysis, H.264, image quality, 

Java, perceptual image coding, performance evaluation, SSIM, 

streaming media, structural similarity, video compression, x264. 

 

I. INTRODUCTION 

N a world of diverse connected devices, with varying band-

width and video decoding capabilities, along with a billion-

aire entertainment industry, adaptive video streaming services 

have become prevalent in the Internet. In such systems, sever-

al versions of same content are produced according to targeted 

devices and bandwidth, while attempting to maintain a thresh-

old of quality against human perception [10]. Modeling human 

perception of images has been a prolific research field for 

years, and the SSIM index has gained wide adoption and has 

been tuned and extended with varying techniques [1] [2] [6] 

[9] [13] [14]. As well, the x264 encoder for H.264 video has 

been established as the most efficient publicly available video 

encoder, notorious for its psychovisual tunings [7] [8]. This 

paper presents an extensible, open-source framework for nu-
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merous SSIM-based tools designed for high performance and 

Full HD support, called jVQA - Video Quality Assessment in 

Java. Upon this framework, the performances of 32 combina-

tions of 10 SSIM techniques are compared in an attempt to 

objectively measure the otherwise subjective tunings of x264. 

The key concept in comparing video versions is video fidel-

ity. Video is a sequence of frames, which are digitized as color 

points called pixels. The most basic concept of video fidelity 

in digital medium comes from the amount of information or 

bits used to represent each pixel: bits per pixel (per frame). 

Since raw, uncompressed video produces an enormous volume 

of highly redundant data in all dimensions, in practice digital 

video is always employed in compressed form. Particularly, 

Web-based streaming requires high compression, which must 

be efficient to avoid or manage fidelity loss [10]. Video com-

pression is a sophisticated science and art that exploits both 

convenient mathematical transformations and peculiarities of 

the human visual system (HVS). For this reason, bits per pixel 

alone are not a useful metric, although it is always part of the 

equation. 

A reference software for jVQA is the Moscow State Uni-

versity Video Quality Measurement Tool [3], which computes 

precise and fast versions of SSIM, MS-SSIM and 3-SSIM, 

among other metrics. This tool uses Avisynth input, which 

provides a useful abstraction of the video decoding function 

[11]. Avisynth input is also convenient for encoding with 

x264. Thus, it has also been found a convenient input for 

jVQA. 

Ideally, jVQA would be implemented in the C++ language 

for dynamic linking with Avisynth. Due to time constraints 

and lack of experience with C++, however, the authors chose 

to implement in Java. Since Java runs on a virtual machine - 

JVM, it was necessary to implement a native access compo-

nent, which was called JNAVI - Java Native Access for 

Avisynth. 

II. MANAGING AVISYNTH INPUT WITH JNAVI 

Avisynth is a video frame server for Windows operating 

systems that relies on either the system’s native decoders 

(Windows DirectShow) or specific plugins for decoding video 

(such as an ffmpeg wrapper). It consumes simple scripts for 

instructions and produces decoded frames. A dynamic link 

library is provided that encapsulates all frame-serving func-

tions. Through this library, the frame byte stream becomes 

available to client applications. 
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The Java Native Access library was employed by JNAVI 

for accessing the Avisynth DLL’s functions [12]. Thus, 

Avisynth was encapsulated and abstracted, and convenience 

functions were implemented. For example, MPEG-based vid-

eo is based on the planar, 12-bit Y’UV12 colorspace. This 

colorspace separates the luminance plane from the two chro-

minance planes (differentials between blue and yellow and 

green and red) and subsamples chrominance to ¼ pixels so the 

original 24 bits per pixel are halved, based upon the premise 

that the HVS is less sensitive to chroma variations than luma. 

JNAVI implements convenience functions for obtaining the 

byte streams of each plane separately. 

JNAVI is published as free, open source software (FOSS) at 

SourceForge.net [5]. 

III. JVQA DESIGN 

SSIM is an image metric, not a video metric per se. While 

there are video metrics such as MOVIE and spatio-temporal 

SSIM [16], these are not yet implemented in jVQA. Since a 

single minute of video at typical 24 frames per second make 

for 1440 frames, it is important that metrics computation be 

efficient. Also, high-definition content has recently become 

commonplace, jumping from trivial 300,000 pixels in 480p 

per frame to 2 million in 1080p, and Ultra-HD 4K is starting 

to be marketed. Since metrics are done over the 8-bit lumi-

nance component of decoded frames, each pixel equals to one 

byte, which can inflate memory usage rapidly if left unman-

aged. Unfortunately, this has found to presently be the case 

with JNAVI. Java does not allow for memory management by 

the programmer, so it will be necessary to encapsulate 

Avisynth’s DLL with a custom DLL to correctly free memory 

pointers as soon as they are no longer needed. 

In order to maintain maximum control over image pro-

cessing efficiency, the authors chose to forgo any image pro-

cessing library and implement each image operation from 

scratch: correlations, convolutions, downsampling, box filter-

ing, Gaussian filtering and Roberts and Sobel gradients, for 

instance. Along with native memory concerns, it is also im-

portant to not overexert the JVM’s memory by using adequate 

primitives. Ideally this would be “byte”, but in Java all integer 

types are signed, in this case ranging from -128 to 127, so 

inefficient conversions would be needed for the required 

arithmetic operations. For this reason, the 16-bit integer 

“short” type is preferred over “byte”. It is also important to 

avoid floating-point operations, substituting with integers 

whenever possible. Also, when convolving matrices, it is most 

efficient to apply as many combined operations as possible at 

each pixel scan. 

Finally, sensible object-oriented design was employed, not 

only for component organization and avoid code redundancy, 

but also to allow for smooth recombination of elements as 

well as reuse and extension. Along with JNAVI, jVQA is 

published as FOSS at SourceForge.net [4, 5]. 

 

IV. IMPLEMENTED METRICS 

Initially, jVQA implements the SSIM index, as well as 

some of its variations. The original SSIM index proposed by 

Wang and Bovik analyses images’ luminance plane over 

means (luminance), variances (contrast) and correlation of 

variances (structure), employing an 8x8 box filter to achieve 

local isotropy, producing real values theoretically in the range 

-1 (completely different) to 1 (identical) [18]. Later formaliza-

tion and improvement with Sheikh and Simoncelli used stabi-

lization of zeros in divisions by adding fixed constants and 

substituted the box filter for an 11x11 Gaussian 1.5 filter [13]. 

A multiscale approach for contrast and structure, MS-SSIM, 

has also been proposed by those authors, which pools the 

responses of full scale and four successive ¼ downscalings, 

while computing luminance only for the smallest scale; this 

was shown to better approximate subjective mean opinion 

scores [14]. In the SSIM official web site, an ideal single scale 

is also proposed, by downsampling by a factor that approxi-

mates the smallest frame dimensions to 256 [17]; this has also 

been implemented in jVQA. 
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Independent authors Chen, Yang & Xie proposed to substi-

tute Sobel gradient for variance in SSIM, thus G-SSIM [6]. 

Later, this was found useful by Chen & Bovik in their optimi-

zations for Fast SSIM (F-SSIM), where they have shown that 

Roberts gradient is sufficiently accurate and much faster than 

Sobel for the purposes of SSIM [9]. Also, while Chen, Yang 

& Xie computed magnitude simply by the sum of responses of 

the pair of Sobel filters, Bovik proposes to sum ¼ of the low-

est response to the full highest response instead, which helps 

reduce dynamic range overflow. Regarding luminance, since 

Rouse & Hemami proposed that the luminance index usually 

contributes nothing to the index [2] (unless an actual specific 

luminance distortion occurs), Chen & Bovik propose to dis-

pense with the Gaussian filter for this index, instead using a 

fast box filter and the integral image technique for computing 

means. The present paper proposes further to subsample the 

luminance computation by a factor equal to the box filter’s 

side, which is 8 in this case, since all the information of the 64 

pixels is condensed by the box filter into the final, blurred 

pixel, thus further reducing the cost of computing the lumi-
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nance index, in a manner similar to MS-SSIM. Finally, Chen 

& Bovik propose to avoid entirely any floating point opera-

tions besides computing the final index, by substituting an 

integral approximation of the Gaussian filter and limiting its 

size to 8x8 instead of 11x11. 

In a later paper, Rouse & Hemami propose to dispense with 

stabilizer constants, instead applying conditional treatment to 

avoid division by zero, as if instead of zero the value was an 

infinitely small number [1]. This should produce a wider am-

plitude of values, since in SSIM the constant C2 for a dynamic 

range of 0-255 amounts to 58.5225, which, although operating 

with squares, is not an insignificant value and almost negates 

intensities close to that value, especially intensities less than 8. 

The wider amplitude is of great interest for comparison be-

tween images that are very close in quality, as in the case of 

adaptive streaming and psychovisual tuning, for otherwise, the 

index responses are too close for significant differentiation. In 

jVQA, however, Rouse & Hemami’s conditional treatment has 

been modified in response to anomalies during experimenta-

tion and for greater performance and is presented here as a 

new proposal. Thus, for the luminance index: 

 
if mx = my then index = 1 

//treats zero divisor and resolves fast 

else if mx = 0 or my = 0, then index = 0 

//resolves fast 

else increment both mx and mx and compute standard 

division without stabilizer constants. 

 

And, for the consolidated contrast x structure index: 

 
sx = sy, then index = 1 

//treats zero divisor and resolves fast 

else if sxy = 0 or sx = 0 or sy = 0, then index = 0 

//resolves fast 

else compute standard division without stabilizer 

constants. 

 

The modified luminance index increments values because 

otherwise the index resulting of 0 and 1 would be 0, while the 

index resulting of 1 and 2 is 0.8, which would cause a wide 

distortion. Thus, dynamic range in index computation is shift-

ed from 0-255 to 1-256, a minor adjustment that stabilizes the 

index’s results. 

Preliminary testing indicates that a constant stabilizer of 1 

produces the same information as 58.5225, only with a wider 

dynamic range of intensities. While this should be the case for 

any positive, non-zero constant, when normalizing the error 

map to a dynamic range of 0-255, a stabilizer of 0.0001 ne-

gates many useful values by approximating to 0. Thus, for 

normalized error map visualization purposes, this paper pro-

poses that a constant stabilizer 1 is probably more useful than 

both 0 and the standard SSIM stabilizer. Regardless of visuali-

zation, since they widen index amplitude, both 0 and 1 seem 

more useful for comparing images that are known beforehand 

to be highly similar. 

V. PSYCHOVISUAL RANKING 

Every lossy video encoder faces an important decision: 

which information to keep and which to discard. Mean 

squared error is the widest and longest adopted decision metric 

for this quantization, in the form of peak signal-to-noise ratio 

(PSNR). However, it has long been proven to be a poor met-

ric, favoring blurriness over fine detail and completely disre-

garding image structure [19]. X264 can be tuned to maximize 

PSNR, SSIM or its own psychovisual model. This model is 

based on calibration of adaptive quantization, visual energy 

retention, Trellis quantization and in-loop deblocking filter 

[20] [21]. Adaptive quantization allows for some transform 

blocks in a frame to be allotted more bits than others and is 

useful to preserve smoothness in gradients. Visual energy 

retention favors retention of fine detail, which contributes to 

human perception of quality. Trellis quantization accounts for 

entropy coding, i.e., the actual cost of bits, when deciding 

quantization, which otherwise would be a future step that does 

not affect quantization decisions. Finally, in-loop deblocking 

filter is a very useful feature of modern video formats but 

which must be calibrated to avoid unwanted loss of fine detail. 

PSNR and, to a lesser extent, SSIM have been found to fa-

vor blurriness, and for this reason rank psychovisual tunings 

poorly. Thus, when evaluating by traditional, variance-based 

SSIM, low-bitrate videos tuned by SSIM, PSNR and psy-

chovisual model (“psy”) will rank SSIM first and psy last. 

This paper is interested in a metric that would rank psy first 

and PSNR last, building upon the SSIM framework. Thus, 

four classifications are defined: target (psy > SSIM > PSNR), 

expected (SSIM > PSNR > psy), inverse (PSNR > SSIM > 

psy) and unexpected (any other ranking). 

Since SSIM employs a blurring filter (either box or Gaussi-

an), it is no surprise that such index exhibits a bias towards 

blurring. This paper will investigate the effect of such filter 

over psychovisual ranking and index amplitude by comparing 

results with a single-pixel window. 

 

 
Fig. 1.  Left: Integral image. Right: How to compute  sum value over region 
D in integral image domain. 

  

 
Fig. 2.  8x8 integer approximation of Gaussian window. 
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VI. EXPERIMENTATION METHODOLOGY 

Experimentation was conducted in order to measure psy-

chovisual ranking adherence, index amplitude and computing 

performance between the various SSIM-based tools of inter-

est. 5 components or dimensions are compared: structure 

scale, luminance precision, structure statistic, window type, 

and division stabilization strategy. 

For structure scale, there are 3 options: single full-scale, 

single down-scaled to 256 and multiscaled. For luminance 

index precision, also 3 options: Gaussian filtering, full-scale 

box filtering and downscaled box filtering. For structure statis-

tic, 5 options: variance, Roberts gradient with simple magni-

tude sum, Roberts gradient with Bovik's magnitude sum, and 

the Sobel gradient equivalents. For structure window type, 

there are 4 options: 11x11 precise 1.5 Gaussian, 8x8 average, 

8x8 Gaussian integer approximation and single pixel (unfil-

tered). Finally, for zeros stabilization, there are 2 options: 

Wang et al's constants or conditional handling adapted from 

Rouse & Hemami. All these produce 360 combinations. 

Some options are sufficiently redundant that may be 

discarded in the interest of brevity. Insuficient documentation 

and implementations on the single down-scaled method were 

identified for comparison, so this is not tested. Since it has 

previously been estabilished that luminance index is of little 

contribution, there is insufficient necessity to test precise 

(Gaussian) luminance. As for statistics, preliminary tests 

indicate that Sobel and Roberts produce most the same 

information in the context of correlation and comparation and 

Roberts is faster, so Sobel is discarded. It is also out of the 

focus of this paper to compare Bovik's magnitude to simple 

magnitude, so we are left comparing variance to Robert's 

gradient by Bovik's magnitudes. Although MSU VQMT 

provides the option for box filtering as a performance 

compromise, this paper is more interested in comparing Gauss 

with unfiltered. Particular interest also resides in how a single 

pixel window compares to a Gaussian window, as results may 

be more precise and favor visual energy retention. Since 

performance is also a concern, the integer approximation is 

preffered over precise Gaussian. 

 

360 combinations are thus reduced to 32 more significant 

combinations, composed of: full-scale vs. multi-scale struc-

ture, full-scale vs. downscaled box-filtered luminance, vari-

ance structure vs. Roberts gradient structure, 8x8 Gaussian 

window vs. single pixel window, and constant vs. conditional 

stabilization. 

Since experiments measured execution time, the full batch 

was run in the same hardware. Two full batches were run in 

two different hardware: an Intel i7 with 4 GB RAM running 

Windows 8 and an Intel i5 with same RAM running Windows 

7, both with Java Runtime 7. Computation time has been 

measured strictly over metric computation, separate from file 

system operations. 

Experimentation was conducted over a 1'36” long excerpt 

of a commercial Blu-ray title with a mix of high and low 

movement between frames, with a total of 2300 frames. Due 

to memory leakage in Avisynth, it was necessary to 

downsample the frames from 1920x1080 to 720x404 and 

regularly skip frames while batch testing, effectively 

downsampling framerate by a factor of 2, for the i7 CPU 

(1150 total frames), and 3, for the i5 CPU (767 total frames). 3 

degraded versions were produced in x264 for each of the tar-

get tunings: psy (grain), SSIM and PSNR. The degraded ver-

sions are all 2-pass 600 kbit/s constrained to a keyframe inter-

val of 96, all IDR-frames, no B-frame pyramid, minimum 

quantizer = 4, and a 1-second, 900 kbit/s video buffer [7] [10]. 

With 32 metrics and 3 degraded videos, 96 tests were con-

ducted over 1150 and 767 frames each. 

VII. EXPERIMENTAL RESULTS 

17 out of 32 metrics were found to adhere to the target psy-

chovisual ranking; 5 resulted in the expected ranking, 4 result-

ed in the inverse of the target ranking, and 6 resulted in unex-

pected rankings. However, after testing, a bug was identified 

in the implementation of unfiltered variance metrics, which 

TABLE I 

COMBINATIONS OF APPROACHES TESTED 

Dimension Approach 1 Approach 2 

Structure scale Single, full Full +4 downscales 
Luminance precision Full-scale average Downscaled average* 

Structure metric Variance Roberts gradient 

Pooling window 8x8 Gaussian Single pixel* 
Division stabilization Constant Conditional* 

Approaches proposed in this paper are marked with [*]. 

 
Fig. 3.  Luminance index computation performance comparison between 

full-scale and downscaled approach proposed in this paper. The improvement 

in performance occurs for all full-scale (downscaling strategy) experiments.  

 
Fig. 4.  Division stabilization strategy comparison between constant an 
conditional approach proposed in this paper. Graphic shows the increase in 

amplitude values, keeping the proportion between original values. 
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contributed 4 times to target and 4 times to unexpected rank-

ings and may change to other rankings after correction. 

Notably, gradient structure always adheres to the target 

ranking except when simultaneously unfiltered and stabilized 

by constants. It also produces the widest amplitudes. Natural-

ly, variance tends to favor SSIM tuning, although it produces 

mixed results for the second and third places in rank. Overall, 

multiscaling attenuates all parameters’ effects and all ampli-

tudes, except for conditional unfiltered gradient. 

 The single pixel window drastically improves computing 

time for all combinations, up to 10 times, virtually negating 

performance variations of other parameters; all results are 

within 10% and the difference between gradient and variance 

becomes statistically null (less than 1%).  Gradient structure 

index results become inconsistent between conditional and 

constant stabilization. Variance structure index results seem to 

stabilize and negate the effects of other parameters, but ampli-

tude is so extremely reduced (5th decimal for full-scale, 7th 

for multiscaled) it becomes of little usefulness. Unfiltered 

gradient with conditional stabilization adheres to the target 

ranking and might be the best metric of all over all parameters, 

but since it is inconsistent with constant stabilization and this 

is not well understood, it requires further testing. 

With the approximated Gaussian window, multiscaled pro-

cessing takes 25% longer than full-scale. This is less than the 

expected 33%, most likely due to luminance processing time 

being included. Variance is 50% slower than gradient, also 

including luminance time. Future testing should disregard 

luminance time in order to properly compare the performance 

of the different statistics. 

Conditional stabilization improved index amplitude for gra-

dient but reduced it for variance. It also greatly reduces the 

index for gradient, lowering from 0.9 to 0.8 with Gauss or 0.6 

unfiltered; this may be useful but requires further testing. 

Constant vs. conditional stabilization only affects ranking for 

variance with Gaussian and gradient unfiltered; all other cases 

see no change in ranking within other parameters. Conditional 

stabilization remains a useful tool but requires attention. Sur-

prisingly, no statistical difference in performance was ob-

served. 

Downscaled luminance index is consistent with fullscaled 

up to the 5th decimal, a promising result, except for mul-

tiscaled variance with Gaussian, which is anomalous by this 

and other parameters. With fullscaled structure, it performs 

around 20 ms per frame faster than fullscaled, which for 767 

frames amounts to 12 less seconds, on average. On the other 

hand, this contribution is diluted in multiscaled structure, 

which already downscales luminance by default and also 

computes structure 5 times. In any case, MS-SSIM corrobo-

rates the strategy of downsampling luminance and this has 

proven effective. Also, results confirm the small contribution 

of luminance to the overall index. 

Large anomalies resulted from both Gaussian and unfiltered 

multiscaled variance with full-scale luminance and conditional 

stabilization. These probably indicate bugs in the authors’ 

implementation. Since full-scale luminance was found to be 

reasonably redundant with downscaled luminance and the 

downscaled luminance versions did not reflect such anoma-

lies, these are not considered significant results. 

For analysis purposes, results were grouped by structure 

scale, structure statistic and window type, which are the most 

significant parameters. Within each group, 4 results are listed 

combining full or downscaled luminance and conditional or 

constant stabilization. Index and performance results are most-

ly consistent within the groups, except for anomalies in unfil-

tered gradient (both full and multiscaled) and Gaussian mul-

tiscaled variance. Performance results for the best of each 

group are given in Table II. All metrics were also tested for a 

result of 1 when comparing identical content and passed. 

VIII. CONCLUSION 

Free, open-source, reusable, object-oriented software was 

developed with Java and published at SourceForge.net for 

accessing frames served by Avisynth and computing SSIM-

based video quality metrics, with several general-purpose 

image processing tools. SSIM, Gradient SSIM, Fast SSIM and 

previously proposed optimizations were implemented in such 

a way that their individual elements can be combined to com-

pose many different metrics. The most significant 32 combina-

tions of these elements were twice tested against psychovisual 

ranking, index amplitude and computing performance for 3 

different tunings of the x264 encoder. Gradient structure was 

found to better correlate with the x264’s psychovisual tech-

niques than variance structure, which is consistent with the 

detail retention and gradient optimization techniques em-

ployed by the encoder; it also shows greater index amplitude 

and performs better than variance structure. Downsampling 

the luminance component of the index proved reliable, while 

not pooling local statistics with a Gaussian window seems 

unreliable at this point, requiring deeper investigation. Condi-

tional stabilization of the index showed inconclusive results as 

well. 

This work allowed the authors a deeper understanding of 

many image processing operations: planar color space pro-

cessing, convolution, correlation, statistical variance analysis, 

gradients, box filters, Gaussian filters, image averaging by 

integral, and performance optimization, among others. It has 

also been an exercise in statistics and software engineering. 

The authors were able not only to implement several tech-

niques proposed in six academic papers, but also to propose 

new and effective approaches. 

TABLE II 

BEST PERFORMANCES PER GROUP 

Group Best Run Time 

Gaussian full-scale gradient 5’42” 

Gaussian full-scale variance 8’26” 
Gaussian multiscaled gradient 7’10” 

Gaussian multiscaled variance 10’44” 

Unfiltered full-scale gradient 1’39” 
Unfiltered full-scale variance 1’40” 

Unfiltered multiscaled gradient 1’48” 

Unfiltered multiscaled variance 1’48” 
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IX. FUTURE WORK 

Many tasks remain to make jVQA feasible for practical use 

by the public: 

 memory management on the native side; 

 performance test for 1920x1080 content; 

 multi-threaded processing; 

 correction of two anomalous metric combinations; and 

 finishing the graphical user interface. 

Experimental results beg deeper investigation into several 

metrics: 

 unfiltered gradients; and 

 Gaussian multiscaled variance. 

8x8 windows overlap with 8x8 spatial prediction blocks of 

MPEG video. This is likely not a problem with Gaussian win-

dows, which weight more at the center, but can be a problem 

with average box filters such as for the luminance index. 

Avoiding such overlap, such as by the 11x11 window pro-

posed by Wang et al, might improve the indexes’ perceptual 

effectiveness. Since this is only an issue for luminance, which 

uses a box filter and is downscaled, a 10x10 or 12x12 window 

would probably be more effective. As well, it would be inter-

esting to compare the Gaussian integer approximation to a 

simple averaging window, such as implemented in MSU 

VQMT’s fast metrics, coupled with downsampling, as has 

been proven effective for luminance; such approach would 

greatly improve performance at the cost of some precision, 

which might perhaps be reasonably subtle as to preserve the 

metric’s effectiveness. 

It is also important to confirm all ranking results against 

content of varying bit rates. Finally, more metrics deserve 

implementation in jVQA, such as: 

 3-Component SSIM [15]; 

 Spatio-temporal SSIM [16]; and 

 PSNR. 
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Gaussian fullscale gradient: Psy-grain Time SSIM Time PSNR Time Amplitude Ranking

Conditional, downsampled luma 0,94235214 5'39"432 0,93334317 5'55"077 0,92606817 5'31"559 0,01628397 Target

Conditional, full luma 0,94235129 6'09"849 0,93334201 6'10"496 0,92606698 5'46"786 0,01628431 Target

Constant, downsampled luma 0,99824107 5'45"697 0,99805673 5'49"915 0,99770879 5'23"471 0,00053227 Target

Constant, full luma 0,99823996 6'14"067 0,99805528 6'10"893 0,99770726 5'44"017 0,00053270 Target

Gaussian fullscale variance:

Conditional, downsampled luma 0,97869169 9'08"479 0,97985273 9'16"300 0,97929336 8'24"402 0,00116103 Inverse

Conditional, full luma 0,97869082 9'31"582 0,97985153 9'35"360 0,97929211 8'46"547 0,00116071 Inverse

Constant, downsampled luma 0,99013999 9'08"309 0,99122574 9'06"804 0,99126759 8'28"034 0,00112760 Expected

Constant, full luma 0,99013889 9'31"472 0,99122431 9'29"180 0,99126606 8'48"429 0,00112718 Expected

Gaussian multiscaled gradient:

Conditional, downsampled luma 0,98728226 7'33"018 0,98406214 7'36"668 0,98111436 7'07"429 0,00616790 Target

Conditional, full luma 0,98728144 7'40"452 0,98406136 7'01"921 0,98111332 7'16"012 0,00616812 Target

Constant, downsampled luma 0,99973350 7'39"143 0,99967390 7'39"884 0,99958277 7'11"707 0,00015073 Target

Constant, full luma 0,99973255 7'43"001 0,99967296 7'08"997 0,99958154 7'11"798 0,00015100 Target

Gaussian multiscaled variance:

Conditional, downsampled luma 0,99154924 12'00"702 0,99194642 11'51"672 0,99144383 11'23"311 0,00050259 Unexpected

Conditional, full luma 0,99999593 1'00"065 0,99999549 0'53"311 0,99999494 0'54"722 0,00000099 Target

Constant, downsampled luma 0,99654260 11'46"876 0,99687375 11'35"912 0,99672227 11'18"476 0,00033115 Expected

Constant, full luma 0,99154842 12'02"739 0,99194563 11'11"327 0,99144279 11'20"092 0,00050284 Unexpected

Bold-faced results were found incorrectly computed.
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Unfiltered fullscale gradient: Psy-grain Time SSIM Time PSNR Time Amplitude Ranking

Conditional, downsampled luma 0,72604727 0'46"174 0,72446875 0'47"556 0,71793424 0'43"787 0,00811303 Target

Conditional, full luma 0,72604661 1'12"616 0,72446785 1'11"548 0,71793331 1'05"699 0,00811330 Target

Constant, downsampled luma 0,97325227 0'48"686 0,97478602 0'48"680 0,97481230 0'44"553 0,00156003 Inverse

Constant, full luma 0,97325119 1'13"040 0,97478460 1'10"598 0,97481080 1'07"363 0,00155961 Inverse

Unfiltered fullscale variance:

Conditional, downsampled luma 0,99988178 0'43"995 0,99988898 0'46"764 0,99987266 0'40"780 0,00001632 Unexpected

Conditional, full luma 0,99988088 1'10"534 0,99988776 1'09"069 0,99987139 1'03"543 0,00001637 Unexpected

Constant, downsampled luma 0,99987496 0'46"153 0,99988259 0'47"528 0,99986514 0'44"117 0,00001745 Unexpected

Constant, full luma 0,99987385 1'11"224 0,99988114 1'14"232 0,99986360 1'05"818 0,00001753 Unexpected

Unfiltered multiscaled gradient:

Conditional, downsampled luma 0,86009529 1'03"543 0,85973426 1'01"943 0,85065132 0'58"394 0,00944396 Target

Conditional, full luma 0,86009457 1'03"748 0,85973358 0'56"476 0,85065044 0'58"456 0,00944414 Target

Constant, downsampled luma 0,98772358 1'06"147 0,98852156 1'05"713 0,98791329 1'00"164 0,00079797 Expected

Constant, full luma 0,98772264 1'05"668 0,98852063 0'57"357 0,98791209 1'02"181 0,00079799 Expected

Unfiltered multiscaled variance:

Conditional, downsampled luma 0,99999706 0'54"847 0,99999663 0'57"342 0,99999638 0'51"978 0,00000067 Target

Conditional, full luma 0,99973255 7'45"240 0,99967296 6'59"419 0,99958154 7'11"474 0,00015100 Target

Constant, downsampled luma 0,99999688 1'00"404 0,99999642 0'59"364 0,99999617 0'55"205 0,00000071 Target

Constant, full luma 0,99999623 0'55"620 0,99999584 0'52"820 0,99999533 0'53"063 0,00000090 Target

Bold-faced results were found incorrectly computed.
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